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Abstract

We present an efficient numerical algorithm for the computation of
curves for elastic cables of cable railways. The cable load is distributed
over an arbitrary number of supports. The cable is assumed to move along
the supports without friction and is held fixed at the endpoints of the line.
The weight of the car is modelled as a point load at arbitrary position
along the cable car line. For given temperature we minimize the total en-
ergy of this system numerically to determine the equilibrium positions of
both the cable and the car. The resulting cable curve is exact up to first
order in the strain. Numerical results demonstrate good performance for
the computation of quasi-static cable movements. In a numerical example
we demonstrate the graphical output of a MATLAB® program.

Keywords: Cable Railway, Cable spans, Elasticity, Numerical Computa-
tion, Minimization of Energy

1 Introduction

The problem of finding the equilibrium position of an inextensible cable
and its solution is not new (catenary: Leibniz, Huygens, Bernoulli, 1691
[Routh(1891)]). The same holds true for an elastic cable also [Schell(1880)].
‘We have been unable to find out who solved this problem for the first time,
but it was not G. Galilei, who assumed that the catenary is a parabola
(probably the highly strained catenary only, the history in this case seems
to be quite involved [Szabo(1987)]). In fact, in many applications the ap-
proximation of the exact cable curve in the form of a parabola is sufficient
and has commonly been used up to now. It allows a quick estimation of
the cable tension or the mid-span catenary sag and sufficient accuracy for
technical application, in particular in the field of rope—ways, is reachable
[Czitary(1962)]. The question arises why we one should look into such
an problem again? The answer is simple. We want take advantage of
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modern computer power and high level programming languages available
and set up a consistent, closed set of equations to solve the core problems
in the construction of cable cars exactly and fast: the determination of
maximum cable tensions and mid—span catenary sags. Furthermore we
are interested in bringing the information for the planning engineer to the
computer screen graphically and in well organized form.

We consider an elastic cable (in the linear regime), distributed over an
arbitrary number of supports fixed at the endpoints (we do not consider
here the situation, where the cable is spanned with a movable weight at
one end of the line). A point load (cable car) is sitting at an arbitrary posi-
tion in the line. Our computational method is based on a minimization of
the total energy of the system [Courant and Hilbert(1993)]. Such strate-
gies are widely used in physics and technology (Ritz - variational principle
[Schmutzer(1989), Rennert and Schmiedel(1995)], such as optimal control
of quantum systems [Wenin, Roloff, and P5tz(2009)]) or in elasticity the-
ory (principle of minimal free energy [Landau and Lifschitz(2010)]). This
approach is ideal for static problems because one computes only the small-
est number of quantities needed to characterize completely the physical
system [Garcia, Carnicero, and Torres(2009)].

One can compare this situation with equilibrium thermodynamics and ki-
netic theory. In equilibrium a few parameters (e.g. pressure, volume) are
sufficient to describe the complete system, whereas in non-equilibrium the
determination of a distribution function is required. This argument im-
mediately shows the advantage of our approach when compared with the
usual discretization method, where the continuous cable curve is replaced
by a large number of chain links. Obviously we cannot describe transver-
sal oscillations of or longitudinal compression waves in cables (a ”non-
equilibrium” state of the cable). There is a rich scientific literature about
this topic [Volmer(1999), Pataria(2008), Rega(2004), Starossek(1994)]
[Gattulli, Martinelli, Perotti, and Vestroni(2004), Lacarbonara, Pacitti(2008)].
However the method is sufficient to compute all relevant numbers and
data for the engineer to design a plant and check the safety required by
law [CEN-Norm(2009)]. The program developed by St. Liedl, written in
FORTRAN, present a remarkable piece of work but it does not take full
advantage of graphical display of output available now [Liedl(1999)].

In this publication the attention is concentrated on the physics and the
mathematical description of the problem. Technical aspects are regarded
only as far as they are necessary.

The paper is organized as follows: in Sec. 2 we present the basic formulas
used in the computations, e.g. the length of the cable. We discuss the
energy of the complete system, define the dependent variables and the
constraints of the minimization problem. Sec. 3 contains a numerical ex-
ample for the optimization solution scheme. For now, we do not discuss
problems, such as ice covered cables, wind loads, or friction resistance on
the supports [Engel and Loscher(2003)]. We intend to do this in a further
publication in the near future as discussed below.



2 Theory

In this section we give a brief overview of the main aspects of our approach
and the most important formulas used in the computer program. The
central point of the computation is the energy of the elastic catenary in a
homogeneous gravitational field and its temperature dependence.

2.1 Basics

Let us start with some basic useful relations. The formulas in this section
are used in several applications during the main computation and the de-
termination of derived quantities (support pressure or various angles etc.)
The supports themselves are considered to be point-like. All formulas are
correct up to first order in the elastic strain. Because we consider two
dimensional problems only, we use cartesian coordinates with abscissa x
and ordinate y (see Fig. 1).

A, xlr: ,d+

Figure 1: Sketch of the system under consideration and some definitions of
quantities. The figure shows a cut of a cable railway, coordinates of support
no. j are denoted as Xj;,Y;. The point load is sitting at an arbitrary position
within the line, we assume the cable can move without friction on the supports.
The elastic support cable for each span is characterized by three parameters.

2.1.1 ”Elastic” catenary

The analytical expression for the ”elastic catenary”! for one span is given
by [Schell(1880)]

y(z) = yo(x) + dy(z) ,  yo(x) = acosh (m —al'm) —c. (1)

Here yo(z) is the familiar catenary for the ideal flexible, inextensible cable.
The cable parameters a, z,, and ¢ uniquely define the position of the

1We use this terminus to distinguish it from the familiar catenary.



catenary in the plane. a is the radius, x, the abscissa and a — ¢ the
ordinate of the curvature at the vortex. The expression

oy(z) = f%kaQ sinh® (%) , k= % , (2)
accounts the deviation from it (g is the earth acceleration, £ the isothermal
modulus of elasticity and A the cross section of the cable, respectively).
Eq. (1) is not exact but a series expansion, valid for small elastic strains
(the exact expression is also known in parameter form). In practical sit-
uations the maximum strain Al/l is less than 0.5 %, so the linear theory
is sufficient for our purpose. As one can see, for a given elasticity the
catenary in any case is characterized by three parameters, the generalized
coordinates, {a, Tm,c}. The linear mass density depends on temperature
T, pr = p2L[1 — ar(T — Tret)], where ag, is the coefficient of linear thermal
expansion, but the influence of this effect on the numerical results is small
compared to the thermal deviation of the cable length. p2 is the mass
density of the tensionless cable for the reference temperature Tis. We
assume no temperature gradients, so in practical situations one should
use a mean temperature for both 7" and Tyes.

2.1.2 Length of the cable

To compute the length of the cable between two supports with coordinates
(X;,Y;) and (X1, Yj41), called I;, we need two cable parameters a’, z7,.
Using the well known arc length integral [ /1 + y'(z)2dz, we perform a
series expansion of the integrand (the prime denotes the derivative respect
to z), where we use Eq. (1) and Eq. (2). Omitting the details of the
calculations, we arrive at (we assume always X;11 > Xj),

I = G(d’, 2 Xjp1) — Gla? 205 X;) (3)

The length [; is written as a difference of a function G, evaluated for two
coordinates. G itself is defined as

G(a,xm;x) = Fi(a,zm;x) + 0F1(a, xm; ) , (4)

where the well known function for the inextensible cable is

Fi(a,zm; ) := asinh (w _axm) ; (5)

and

SFy(a, mms 7) = —%ak) {—23; + asinh (@ﬂ . ©6)

takes into account the elastic strain of the cable. G(a,xm;x) does not
depend on the parameter c.
2.1.3 Tension, elastic strain and lengthening of the cable

The computation of the tension and the elastic lengthening of the cable
is an essential task for the computation of the cable curve. We present



therefore here some important results, used later several times, when the
length of the tensionless cable at a fixed temperature is prescribed at a
given value. In general, the differential tension is dF = pi"(x)gdy, where
p¥™(z) is the linear mass density of the stretched cable. This means,
p%"(x) depends on the strain and is therefore a function of the position.

Integrated one obtains, for small strain, the expression

F(z) = Fy + prgly(a) = Vil = Z2{ v + B [yo(a) — Vil lyo(@) - V1] -

Here Y1 = y(X1) is the y-coordinate of the valley station (where the
cable is anchored) and Fy the cable tension at the valley station. By
insertion of the appropriate yo(z), y(x), Eq. (7) is valid for the entire
cable, independent of the position and number of supports. To calculate
the space-dependent strain

c@ =10 ®)

up to first order, it is sufficient to use
F(z) = Fv + prglyo(z) — Y1 . 9)

For the elastic lengthening of the cable of span no. j we use the general
expression

Xjt1 (F}) o
Al :/ o)/ Ty @rde = 20, (10)
X
where (Fj) is the mean tension within span no. j. Using the functions
given by Eq. (5) and Eq. (14), the elastic lengthening is given by
1 o o
Al; = R{[FV — prgYi] [Fl(aijzn;XjH) - F1(a37373n;Xj)] +
pLg [FQ(ajvcjvxzn;Xjﬁ-l) _FQ(ajvcjvxzn;Xj)] } - (1D

This expression is also useful to compute the mean cable tension via
Eq. (10).
2.1.4 Definition of two auxiliary functions

To compute the energy of the elastic cable in the gravitational field ac-
cording to Eq. (19) and Eq. (20), we need two auxiliary functions, which
we prefer to define already here. The first one is given by

H(a,c,zm;x) := /y(x)\/l + y'(z)2dz . (12)

The treatment of this integral up to first order in the strain is a straight-
forward but lengthy calculation. It is again advantageous to distinguish
between the inextensible cable and corrections to it. So we set

H(a,c,xm;z) = Fa(a,c,xm;x) + 0Fa(a, ¢, zm; ) . (13)



Here as before, the auxiliary function Fs(a, ¢, zm; ) arise from the compu-
tation of Eq. (12) with yo(z) from Eq. (1). The second auxiliary function
0F>(a,c,zm;x) contains the corrections due to elasticity. Explicitly we
obtain,

Fr(a,c,xm;x) =

{21‘ — desinh (£ _a‘”m) + asinh (M)} , (14)

@
4 a

OFz(a,c,xm;x) = %ak{ — 2cz — 2a” sinh® (%) + acsinh (@) } . (15)

The second function is defined as follows
B(a,c,zm;x) = /yo(x)2\/1 + yi(x)?de . (16)

We carry out the integral and obtain

B(a,c,tm;x) = ac(z — zm) + 1(3a3 + 4ac®) sinh (:c _axm> +

4
Cll—;sinh <@) — %26 sinh <@> .1
2.2 Energy

The central quantity for our numerical strategy is the energy E of the
physical system. We consider isothermal processes, therefore, more rig-
orously, we work with the free energy of the system in an homogeneous
external field [Landau and Lifschitz(2010)]. The total energy consists of
three parts, the potential energy of the cable Epot, the elastic potential
(strain) of the cable Es., and the potential energy of the cable car (point
mass) Fyz,

FEiot = Epot + Estr + Ez = Fcap + E7 . (18)

2.2.1 Computation of £, and Eg,

The potential energy Fpot of a free span within two supports with z-
coordinates X; and X1 is given by

i@V Ty @, (19)

Xj

EPOt(aja xz;la C]) = g/

a

where pr(z) = pr/[l + ¢(z)] = pr[l — (z)] is the linear mass density
depending on x. Next we consider Fs,. The general expression contains
the material parameter £ and the cross section A of the cable,

1 Xjt+1
B = A / F(z)*\/1 + yb(x)2dx . (20)
X



We evaluate both integrals to obtain for the energy of the cable,
Eeab(a’, 200, X5, X;41) = pr g [H(ajacj,fcf;mxﬁl) - H(aj,cj,:cfmxj)] -

2
% [B(aj,cj,xin,Xj+1) - B(aj,c’,acﬁij)] +
(Fv — pLg¥1)?

2€A [Fl(aj,xfn,XjH) —Fl(aj,xfn,Xj)] . (21)

We remark that F.., depends on temperature via pr and, depending on
the constraints, also via Fy.

2.2.2 FEio for empty spans

For N empty spans we have a function of 3 X N variables,

N
EtOt(a’17x'}n7cl; a'zax'rz‘rwcz; e aNyan‘“cN) = Z Ecab(a],il?fn,C];Xj,Xj-ﬂ—l) .
j=1
(22)
One can see that Eiot here is the sum of all single span energies.

2.2.3 EZ, for the span carrying the point load

Let us assume the point load with mass my is placed within span no. j., as
indicated in Fig. 1. X7z is its x— coordinate, X; < Xz < Xj11. Due to the
presence of the point load this span is divided into two spans, characterized
by two sets of parameters {a’*,z7:_,¢’*} and {a’7, 277, ¢’ }. The — sign
denotes the left, the + sign the right span. The energy of the charged
span is therefore a sum of three parts, two for two empty spans and one
for the energy of the point load, F| y(Xz),

Efy = Eeav(a,a0i_, % X, Xz)+Eeab(a ,@dz 7, Xoy Xy 1)+ FLy(X2)
(23)

The coordinates {Xz,y(Xz)} are either computed with the left or the

right parameter set in Eq. (1). The value of F'| is not equal to the weight

of the car, but reduced due to the vertical force component of the hauling

cable. Assuming an action angle ¢ = (a4 +a—_)/2 of the upper and lower

hauling cables (see Fig. 2), we can write for the effective support cable

load (this assumption requires a high tension of the hauling cable, usually

realized in practical situations [Czitary(1962)])

Fy = mggcos®(¢) . (24)

We express the angle ¢ in terms of {a7,27>,} and {a’*,27:_} to de-

scribe the energy of the point load self-consistently (for an investigation
of dynamical cable-point load interactions see [Bryja, and Knawa(2011)]).

2.3 Constraints

Apart from the definition of the energy we have to identify the constraints
in order to get a solution. All constraints are treated using Lagrange
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Figure 2: Some definitions of angles. The car (point load) is at the position P.
The (upper and lower) hauling cables act under the angle ¥ = (ay + a_)/2,
where a_, a are the angles of the tangents at P. The angles a;, as are derived
from the cable parameters.

multipliers. The constraints are: continuity of the cable curve at the
supports and the point load position. The length of the tensionless cable
for a given temperature (conservation of mass, formulated with Eq. (3)
and Eq. (11)). To increase numerical stability we use further the condition
that the horizontal cable force is constant within one span.

2.3.1 Empty cable at Ty

The computation starts with the empty cable at a given reference temper-
ature Tyor and cable tension Fy. The linear mass density p}, corresponds
to Tier and zero tension. The solution is completely determined by the
constraints. One minimizes a constant function augmented by the con-
straints: sum of horizontal forces in a span is zero, and the continuity of
the cable line at the supports.

2.4 Minimization

We perform the minimization of FEtot by numerical methods available in
the MATLAB® optimization toolbox,

{d’,2),,Yeq = min A Frot + Edot} s (25)

P
ad, @y, el }

subject to the constraints. The solution {a’,z,, ¢’ }eq represents the set
of equilibrium parameters which minimizes the energy. The routine uses
local, gradient based minimization methods, and an initial guess is re-
quired.



2.4.1 Starting values for the empty cable

We assume a given cable tension at the valley Fy, support coordinates
and linear mass density p}, for Tier. The derivation of the following start-
ing values for the cable parameters is based essentially on the parabola
approximation of the cable line (see Eq. (32)). Using the auxiliary quan-
tities: AXJ = Xj+1 - Xj, AY} = Y'j+1 - Y}, AS] = ,/AAX—J2 + AY?, and
LY 1Y .
G = SRS w; = \/4§]2ij2 — (1 - (2)2AX2, where L. = Fy/plg is
a characteristic length, we obtain:

e case V;11 <Yj

AXZIAY;(1+ G — wy]

(a¥)o = ; (26)
2AS2(C7 1)
; X7, — X7 —2d’AY;
J _ g+1 J J
(x)o = AK, . (27)
e case Yj11 =Y (G =1)
(@)o=1lc+Y;—Y1, (28)
) X+ X
(eh)o = L2 (29)
e case Yji1 > Y
AXZ[AY;(1+ ) 4w (30)

@h=—Ree-1n

(x2,)o the same as for the case Y; 11 < Yj.
One is left with the expression for (¢/)o which, in any of the three cases,
is given by
AX] 4 4(0)o(2AX7 + AYP) — 4(a?)oAXA(Y; + Vi)

(o AT

(31)

2.5 Minimal value for the cable tension

In which case does a solution for the parameters {a,c,zm} exist if we
consider an inextensible cable with given length between two points? The
answer to this question is quite simple: when the length of the cable is
larger than the euclidian distance of the points. The same question occurs
if the cable tension Fy instead of its length is prescribed. This is the case
in practice, where Fy is set by hand and is of the order ~ 10x the weight
of the car [Czitary(1962)]. To clear the ambiguities in this case we consider
one span only. Given the tension of the cable Fy; at one end (let’s say
the valley). If we use the model of the inextensible cable it is possible to
derive the following exact relation between Fy; and the span parameter a



(the other two parameters are eliminated using the balance of forces and
the geometric constraint),

1
Fy — =
V= oPLy 2a

\/(Y2 —Y1)? + 4a? sinh® (%)] . (32)

We assume now that the coordinates of the endpoints X1,Y: and X2, Y>
and pr, are given. Then we can plot Fy as a function of the parameter a
(see Fig. 3). We can see that Fy has a minimum Fpin. For Fy < Fuin
no solution exists. For Fy > Fuin two different cable parameters lead to
the same cable tension. In practical situations for cable railways only the
larger value a is relevant.

We compare an elastic with an inextensible cable. Both cables should
have the same length and linear mass density, when no tension is applied.
Physically it is clear that the tension Fy (and as a consequence Fin) for
the elastic cable is smaller as for the inextensible cable. We conclude: if
Fy > Fnin, evaluated for the inextensible cable, is true, a solution exists
for the elastic cable also.

— (Y2 — Y1) + coth (M> X

Fy [N]

o o a [m]
0.2 0.4 0.6 0.8 1.0

Figure 3: Example with p;, = 0.5 kg/m and Yo — Y3 =0, X5 — X; = 1 m gives
a minimal value Fi;, = 3.7 N.

3 Numerical example

In this section we present a numerical example which serves to describe
the structure of the algorithm. The input data correspond to a plant
in Southern Tirol, Italy. This private cable railway leads from altitude
1696 m to 2142 m and conveys at the most four people. The support ca-
ble is a locked coil rope of diameter 21 mm. There are 5 supports (without
the endpoints) and N = 6 spans.
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3.1 Structure of the algorithm

A practical computation starts with the empty cable and the following
input parameters>

e parameters for the (tensionless) cable: linear density, elasticity, cross
section, coefficient for thermal expansion ar,

e coordinates of the supports,
e reference temperature Tief,

In a first run we compute from this data the empty cable curve and the
length lop = Z;V:1 l? of the cable without tension for the temperature Tres.
In the following are computed other relevant quantities, such as support
pressures or various angles.

‘We continue with the computation of the free cable at a given temperature

T. The length of the tensionless cable I is given by
lT = lo[l + aL(T - Trof)] . (33)

This value is used as a constraint for the second run of the computation.
We use the parameter set {a’,27,,¢’}eq of the first result(temperature
Trer) as starting values for the new run. The expression for the elastic
lengthening Eq. (11) contains Fy. We express Fy by the weight of the
cable (= logp}) using the balance of the forces.

When the car is within the line (at a temperature T'), Fy is not constant,
but depends on the position of the load (in contrast to the situation, where
the cable is stretched by a weight). We compute it again by a balance of
forces.

3.2 Numerical results

We use the following cable parameters: p? = 2.53 kg/m, A = 301 mm?,
£ = 160000 N/mm?, a1, = 11.7 x 107® K~!. The tension in the valley
station is F\y = 1.079 x 10° N and the reference temperature Tyor = 20 °C
respectively. The maximum mass of the vehicle (empty car plus four
passenger) is mz = 1080 kg and we use this value for the computations
presented here. In Tab. 1 we show the support coordinates and tangent
angles of the cable at the supports. The latter are computed by ele-
mentary calculus and important quantities to design the supports. The
support pressures F;, are listed also, whereby for the valley— and moun-
tain stations F, per definition points in the cable tangent direction, i.e.
is identical with the cable tension at this position.

Tab. 2 shows the starting and final values of the span parameters {a’, 2J,, ¢’}
of the empty cable at the reference temperature in units of [, = 4347.42 m.
As one can see, the starting values are already near the exact results.

The computation of the length of the tensionless cable at Tyer gives 1831.26 m,
and for the elastic lengthening we obtain 4.38 m, whereas the sum of
the chords is 1835.21 m. One can check these results immediately using
Eq. (10), extended to all spans, which gives for a mean cable tension of

2The structure of the algorithm is widely determined by practical guidelines. See also,
Eng. Vittoriano Vitali: ”Cableway Design Package (C.D.P.)”.
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~ 110 kN (see Fig. 5) a lengthening of ~ 4.2 m. Further results for the
empty cable are obtained for different temperatures and discussed in the
next section.

The main part of the computations deals with the situation, where the
point load is present. To simulate the quasi-static movement of the car,
we compute the equilibrium cable configuration for a series of car posi-
tions, starting at the valley station (for a study with one span only and
a moving mass see [Wang, Rega(2010)]). For the presented example we
have choosen 120 equidistant positions, at a distance of 14.63 m. In or-
der to avoid numerical problems, we ensure a sufficient distance to the
supports.

3.2.1 Discussion of the figures

As the most part of the numerical results are presented in figures, we
discuss these separately. If the contour of the mountain is available, we
can compute and visualize important quantities, which are immediately
valuable for the engineer.

We start with Fig. 4, which gives an overview of the plant. The positions
of the supports and cable lines for the empty cable are shown. Three
temperatures Tier, Tmin = —30 °C, and Tmax = 30 °C are considered.
The bar graph shows the mid—span catenary sag D of the empty cable for
all spans and three temperatures. Because D is measured from the chord,
it is also computable if the mountain contour is missing.

In Fig. 5 we have plotted the cable tension as a function of position for
three temperatures, and the strain, always for the empty cable. Self-
evidently the tension increases for increasing altitude, as Eq. (7) shows.
The mean cable tension for the different spans is an important quantity
when computing the constraint ”constant cable length without tension”,
therefore we have plotted these values also.

Fig. 6 shows probably one of the most important results of the simulations,
namely the distance from ground of the car, when moving along the line.
We remember the reader that we have neglected the friction resistance
of the cable on the supports. Obviously this simplification changes the
result, but an exact determination of the state of the system requires an
integration of the equations of motion for the cable and the point load.
The solution depends on the initial conditions, such that we are far away
from a simple model with a unique solution. Therefore we are convinced
that Fig. 6 contains valuable information for the planning phase of a cable
railway and numbers that are representative. In Fig. 7 we have plotted
the support pressure for all supports and positions of the car. As one
can see, all curves are in the negative region, which means that the cable
in any case (for all point load positions Xz) does not leave the support.
These results are important to decide whether an additional securing of
the cable is necessary or not. Fig. 8 shows an analysis of the cable tension
during the quasi-static movement of the car. The density plot gives the
complete information about the cable tension, i.e. the tension of the
cable at all positions z, for all positions of the point load Xz (again:
without considerations of friction resistances. A simple cumulant sum of
the support friction resistances for fixed cables is doubtful, and the norm
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does not really help in this case [CEN-Norm(2009)]). The presented plot
is for the minimal temperature, which leads to the maximum tension.
The search of the maximum gives for z = 1255.2 m (fifth support) and
Xz ~ 590 m (middle of the second span) a value of 158.8 kN. Fig. 9
presents a summary of subordinate data: the catenary sag of the cable
for Tmin, Tref, Tmax, when the car is in the middle of the span. The
second bar graph shows more technical information, namely the relative
elastic lengthening of the cable, where the elastic lengthening due to the
proper weight was subtracted. Fig. 10 shows the displacement of the
support cable on the supports as a function of the car—position. Here the
assumption of vanishing cable—support friction resistance is essential.

Empty cable for different temperatures

O  Support position
— — — Chord

y[m]

T

ref

T

min
max

0 200 400 600 800 1000 1200 1400 1600
x [m]

Catenary sag for the empty support cable

- Tmln
Py PP | TS ST PR " 1
el ... N __ M|
a
L ol Bl =B = |

Span no.

Figure 4: Sketch of the plant and cable lines of the empty cable. The lower
part shows the mid—span catenary sag for different temperatures. D is defined
as the maximum vertical distance of the cable from the chord.

4 Conclusions

The presented work discusses a numerical method to compute the equi-
librium state of an elastic cable, distributed over an arbitrary number of
supports and charged with a point load at an arbitrary position. We use
the model of the ”elastic catenary” and minimize the total energy of the
system, consisting of the elastic cable and the point load in a gravitational
field. The mathematical expressions to compute the energy are presented.
Because a local, gradient—based minimization algorithm is used, we give

13



Table 1: Support coordinates, cable tangent angles and pressures of the empty

cable on the supports for the reference temperature (

the cable tension).

*

values are identical to

support ¢ | 1 (vall.) 2 3 4 5 6 7 (mount.)
X; [m] 0.0 299.8  781.2 1094.2 1255.2 1540.8 1756.0
Y; [m] 1696.0  1803.0 1971.5 2074.5 2114.3 2180.0 2142.5
al [ 17.67  16.16  16.36 12.01 11.24 -11.16 5
ab [°] - 21.58 2224  20.20 14.85 14.65 -8.60
F, [kN] 107.9* 10.35 12.04  14.75 7.46 53.57 118.98*

Table 2: Starting and final values for the parameters {a’,zJ,,c’} for all spans.
The starting values, denoted with brackets and subscript 0, are computed using
the equations from Sect. 2.4.

i | (@)o  (#h)o (o a’ rh, ¢

1| 0.8969 -0.2856 0.5522 | 0.9506 -0.2986 0.6077
2 10.9280 -0.1995 0.5521 | 0.9818 -0.2123 0.6076
3 1 0.9681 -0.1044 0.5564 | 1.0177 -0.1157 0.6074
4 1 1.0285 0.0160 0.5783 | 1.0570 0.0109 0.6073
5 | 1.0474 0.0806 0.5817 | 1.0725 0.0764 0.6072
6 | 1.0739 0.5663 0.5933 | 1.0876 0.5682 0.6072

formulas to compute the starting values for the solver for the empty ca-
ble. We discuss the influence of the temperature on the energy and the
constraints. In our new program, realized in MATLAB® | we compute
the equilibrium cable configuration for a large number of positions of the
car. Within a loop we displace the position of the point load, starting
from the valley station up to the mountain station, to obtain all relevant
information (cable tension, support pressures, various angles etc.) for all
positions of the car. In a numerical example of a plant realized in South-
ern Tirol, Italy, we demonstrate our theoretical approach. To give an
overview of the main results, the data are presented almost as graphics,

welcome to the engineer.

In this work we do not discuss the important questions about the friction
resistance of the cable on the supports, and also many other technical as-
pects (ice covered cable, wind [Impollonia, Ricciardi, and Saitta(2011)])
are ignored at the moment. We plan to do this, on the basis of the pre-
sented results in the next time. As a further ambitious goal we intend
to test optimization algorithms as auxiliary instruments to find out the
optimal cable type or the optimal support positions. The possibilities in

this research direction are numerous [Kazakoff(2012)].
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Empty support cable: tension
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Figure 5: The cable tension for different temperatures Ty and Tpax as a
function of x. The bars show the mean tensions for the spans, the strain is
computed according to Eq. (8).
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Figure 6: Sketch of the system showing the mountain contour, the support
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choosen T = Tef.
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Cable tension
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Figure 8: Cable tension as a function of position x and car position Xy. Here
the temperature is set 11nin = —30 °C, which gives the maximum tension.
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Figure 9: Mid-span catenary sag, if the car is in the middle of the span, for the
three temperatures. The lower panel shows the relative elastic lengthening of
the entire cable for this case. The indicated lengthening is caused by the point
load. Additional we have for the empty cable the elastic lengthening due to the
proper weight, which numerically gives 5.29/4.38/4.21 m for Tinin/Tvet/Tmax;
respectively.
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Figure 10: Displacement of the support cable ds during the ride of the point
load. §s < 0 means the cable moves to the left.
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